GLIVENKO CONGRUENCE ON A 0-DISTRIBUTIVE MEET SEMILATTICE

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Glivenko Congruence of a 0-Distributive Nearlattice

In this paper the authors have studied the Glivenko congruence R in a 0-distributive nearlattice S defined by " () R b a ≡ if and only if 0 = ∧ x a is equivalent to 0 = ∧ x b for each S x ∈ ". They have shown that the quotient nearlattice R S is weakly complemented. Moreover, R S is distributive if and only if S is 0-distributive. They also proved that every Sectionally complemented nearlattice...

متن کامل

Characterizations of the 0-distributive Semilattice

The 0-distributive semilattice is characterized in terms of semiideals, ideals and filters. Some sufficient conditions and some necessary conditions for 0-distributivity are obtained. Counterexamples are given to prove that certain conditions are not necessary and certain conditions are not sufficient.

متن کامل

The canonical topology on a meet-semilattice

Considering the lattice of properties of a physical system, it has been argued elsewhere that – to build a calculus of propositions having a well-behaved notion of disjunction (and implication) – one should consider a very particular frame completion of this lattice. We show that the pertinent frame completion is obtained as sheafification of the presheaves on the given meet-semilattice with re...

متن کامل

Total graph of a $0$-distributive lattice

Let £ be a $0$-distributive lattice with the least element $0$, the greatest element $1$, and ${rm Z}(£)$ its set of zero-divisors. In this paper, we introduce the total graph of £, denoted by ${rm T}(G (£))$. It is the graph with all elements of £ as vertices, and for distinct $x, y in £$, the vertices $x$ and $y$ are adjacent if and only if $x vee y in {rm Z}(£)$. The basic properties of the ...

متن کامل

Distributive Congruence Lattices of Congruence-permutable Algebras

We prove that every distributive algebraic lattice with at most א1 compact elements is isomorphic to the normal subgroup lattice of some group and to the submodule lattice of some right module. The א1 bound is optimal, as we find a distributive algebraic lattice D with א2 compact elements that is not isomorphic to the congruence lattice of any algebra with almost permutable congruences (hence n...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: JOURNAL OF MECHANICS OF CONTINUA AND MATHEMATICAL SCIENCES

سال: 2015

ISSN: 0973-8975,2454-7190

DOI: 10.26782/jmcms.2015.01.00007